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Abstract
We demonstrate how a saddle point search method can be used to study dislocation mobility in
a covalent material—a non-trivial transition mechanism in a complex system. Repeated saddle
point searches have been carried out by using the minimum mode following algorithm and
dimer method in combination with several empirical potential functions for silicon in order to
determine the mechanisms for the creation and migration of kinks on a non-dissociated screw
dislocation in a silicon crystal. For the environment-dependent interatomic potential, three
possible kink migration processes have been identified with activation energies of 0.17, 0.25,
and 0.33 eV. The Lenosky potential gives a single, low energy migration mechanism with an
activation energy of 0.07 eV, in good agreement with density functional theory results. The kink
formation mechanism determined using this potential has an activation barrier of 1.2 eV.
Calculations were also carried out with the Tersoff potential, Stillinger–Weber potential and
Bolding–Andersen potential. The various potential functions give quite different results for the
kink structure and the mechanism of transition.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

An important task in computational materials science is the
identification of thermally activated transitions that can occur
in materials. Characterization of such transitions involves
identifying the mechanism on the atomic scale and estimation
of the transition rate. At first sight, it might seem that
numerical simulations of the classical dynamics of the atoms,
i.e. finite difference solution of Newton’s equation of motion,
would be a relatively straightforward way of reproducing
laboratory experiments on materials and that one could
simply observe the relevant processes from the dynamics
simulations. Such classical dynamics calculations of atoms and
molecules have, indeed, led to valuable insights and improved
understanding of atomic scale processes in many diverse areas
of science. However, direct classical dynamics simulations
are limited to very short timescales, even when simple
empirical potential functions are used to describe the atomic
interactions—about a nanosecond of real time for a week of
computations. This represents a severe limitation on the types

of phenomena that can be studied in this way. Important
processes such as diffusion and conformational changes are
typically ‘rare events’, in that the atoms vibrate about their
optimal position multiple times in between these events. For
example, the activation energy for diffusion of a Si adatom on
top of the Si(100) surface is about 0.6 eV [1]. Such a diffusion
event occurs several times per second at room temperature
and is active on the laboratory timescale. However, there
are on the order of 1010 vibrational periods between diffusion
events. A direct classical dynamics simulation, which has
necessarily to faithfully track all these vibrational motions,
would take on the order of a thousand years of computer time
on present day computers before a trajectory corresponding to
room temperature can be expected to show a single diffusion
event! While the time between diffusion events can be
decreased by raising the temperature, this does not provide
a solution to the timescale problem because entropic effects
can cause a crossover to a different mechanism at the higher
temperature. It is clear that studies of thermally activated
transitions cannot be carried out for typical systems by simply
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simulating the classical dynamics of the atoms. It is essential
to carry out the simulations on a much longer timescale [1] and
use different algorithms. This timescale problem is one of the
most important challenges in computational materials science.

The separation of timescales between vibrational motion
and activated, configurational changes makes it possible to get
accurate estimates of transition rates using purely statistical
methods, namely transition state theory (TST) [2]. Apart
from the Born–Oppenheimer approximation, TST relies on two
basic assumptions: (a) the rate is slow enough that a Boltzmann
distribution is established and maintained in the reactant state,
and (b) a dividing surface of dimensionality 3N − 1, where
N is the number of atoms in the system, can be identified
and the approximation is that a reacting trajectory going from
the initial state to the final state only crosses the dividing
surface once. The dividing surface must, therefore, represent a
bottleneck for the transition. The TST expression for the rate
constant can be written as

k = 〈|v|〉
2

Q‡

Q R
,

where 〈|v|〉 is the average speed along the normal, Q‡ is the
configurational integral for the transition state dividing surface,
and Q R is the configurational integral for the initial state
(the configuration integral for region S is

∫
S e−V ( �R)/kBT d �R

where V ( �R) is the potential energy for configuration �R of the
atoms). The bottleneck can be of purely entropic origin, but
for most activated transitions in materials it is due to an energy
barrier between the two local minima on the energy surface
representing initial and final states.

Since atoms in solids are usually tightly packed and the
relevant temperature range is frequently low compared with
the melting temperature, a harmonic approximation to the
potential energy surface in the most important regions can
typically be used in materials science studies without much
loss of accuracy. This greatly simplifies the problem of
estimating the rates. The transition state is then chosen to
consist of hyperplanar segments going through saddle points
on the potential energy ridge surrounding the initial state
minimum and the normal of each segment is in the direction of
negative curvature at the corresponding saddle point [3]. The
rate constant for transition through each hyperplanar segment
can be obtained from the energy and frequency of normal
modes at the saddle point and the initial state [4]

khT ST = �3N
i ν init

i

�3N−1
i ν

‡
i

e−(E‡−E init)/kB T .

Here, E‡ is the energy of the saddle point, E init is the local
potential energy minimum corresponding to the initial state,
and the νi are the corresponding normal mode frequencies. The
symbol ‡ refers to the saddle point. The most challenging
part in this calculation is the search for the relevant saddle
points. Each saddle point represents a certain transition
mechanism. The reaction coordinate at the saddle point is the
direction of the unstable mode (the normal mode with negative
eigenvalue). After a saddle point has been found, one can
follow the saddle point along the unstable mode, both forward

and backward, and map out the minimum energy path (MEP),
thereby establishing what initial and final state this saddle point
corresponds to. The identification of saddle points ends up
being one of the most challenging tasks in studies of thermally
activated transitions in materials.

When the initial and final state of a transition is known,
an MEP connecting the two can be found relatively easily.
A saddle point on the energy surface is then identified as a
maximum along the MEP. In the nudged elastic band (NEB)
method, a string of replicas of the system is generated using
some interpolation between the initial and final state of the
transition (usually a linear interpolation between the two end
points, but also possibly including one or more intermediate
configurations) [5, 6]. The replicas are connected with springs
to control the distribution of images along the path and,
thereby, the discretization of the path. If the same spring
constant is used between all the replicas, the method results
in an even spacing of the images along the MEP. Then, an
optimization algorithm involving force projections is used to
relax the replicas towards the MEP (‘nudging’). With the
‘climbing image’ extension of NEB (CI-NEB), one of the
images is made to converge on the highest saddle point along
the MEP [5]. While the saddle point is the only important
point for the harmonic TST rate estimate, in addition to the
initial point, the MEP gives a useful, extended view of the
potential energy landscape. For example, the optimal transition
mechanism may involve a more complex path with one or more
intermediate minima. This non-local view of the most relevant
part of the potential energy landscape can be useful and ensures
that the highest saddle point along the way—the rate limiting
step—has been identified. It is important to remember that the
NEB calculation converges on the MEP that is closest to the
initial guess. Often, there is more than one MEP connecting a
given initial and final state and the initial distribution of images
chosen in the NEB calculation may lead to an MEP that has a
higher activation energy than some other MEP. This feature of
the method can be useful [7] but more often this represents a
limitation of the method.

When multiple MEPs are present between given initial
and final states, and when only the initial state of a transition
is known, and both the final state and the mechanism of the
transition are unknown, a search for the saddle points on the
potential energy rim surrounding the initial state minimum
can be conducted by climbing up the potential surface and
converging on first order saddle points. This can be done using
so called eigenvector following methods which are commonly
used in studies of molecules and small clusters [8, 9]. Here,
the Hessian matrix of second derivatives is constructed and
then diagonalized to get the eigenvectors at each point along
the climb. However, materials science simulations employing
empirical potentials typically involve many atoms, on the
order of a thousand, making eigenvector following unpractical
because of the N3 scaling. DFT calculations necessarily
involve much smaller systems, on the order of 50–100, but
ideally make use of plane waves as basis functions to eliminate
boundary effects, and thereby cannot produce estimates of the
second derivatives unless a great deal of computer time is
involved. The minimum mode following method requires only
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the first derivative of the energy and avoids having to solve the
eigenvalue problem while maintaining the essential qualities
of the eigenvector following method [10, 11]. By starting
from an initial point that is obtained after random displacement
from the initial state minimum and then following the lowest
eigenmode from there (with no relaxation orthogonal to the
lowest mode in the convex region), a distribution of saddle
points can be obtained. Tests have shown that the lower
energy saddle points tend to be found more often than less
relevant, high energy saddle points [10]. Here, it is important
to have a fast way of estimating the direction of the lowest
mode without having to solve the full eigenvalue problem.
One method to achieve this is the so called dimer method
where two replicas of the system, a ‘dimer’, is constructed
and is rotated about its center, with the separation distance
fixed, in order to find the direction of the lowest frequency
mode [10]. Then, the component of the force acting on the
center of the dimer is reversed along the direction of the
dimer. Any optimization algorithm which moves the dimer
according to this modified force will then converge on a first
order saddle point. The method has been illustrated by finding
many possible diffusion mechanisms for an Al adatom on
an Al(100) surface. In addition to the hop and two atom
exchange processes, a four atom and three atom exchange
process were also found, with almost equally low saddle points
as the hop. At higher energy, a large number of processes were
observed, some involving formation of a local reconstruction
of the surface. In the present article, we illustrate the use of
this method by a finding mechanism for the formation as well
as migration of kinks on a dislocation in Si. After finding
one or more saddle points and the corresponding final states,
we find it useful to use the CI-NEB method, started with an
interpolation through the saddle point configuration to map out
the MEP.

We now turn to the application presented here. The
plastic behavior of crystalline silicon in the ductile regime
is known to depend on the mobility properties of 30◦ and
90◦ partial dislocations [12]. Both are assumed to move by
formation of kink pairs and subsequent kink migration [13].
As a result, the structure of both the dislocation cores [14–19]
and the kinks [20–24] have been widely investigated using
atomistic numerical simulations. Despite these efforts, there
is no consensus on the mechanism and activation energy for
kink formation and kink migration in silicon. There are two
reasons for this. First, a large number of kink configurations
are possible for each partial dislocation [21], because of the
dislocation core reconstructions and the possible role played by
antiphase defects. Second, the simulation studies have mainly
been carried out with empirical interaction potentials, but they
are not reliable for describing strongly distorted structures
such as dislocation kinks in covalent materials. Although the
more precise density functional theory (DFT) calculations are
feasible, the great number of configurations to be investigated
and the large system size that is required make them difficult
to perform. The mechanisms leading to kink formation and
kink migration require determining saddle points on the high
dimensional potential energy surface, and characterization of
the full transition mechanism requires finding the minimum

energy path. Since there are many kink configurations, one can
expect a large number of possible MEPs leading to the creation
and migration of dislocation kinks. The task is to determine
the most favorable one, i.e. the one with the lowest activation
energy. Since the NEB method converges only on the MEP
that is closest to an initial guess, it is desirable to apply here
a saddle point search method that samples the energy surface
more widely. An NEB study starting from a ‘reasonable’ initial
guess might miss a non-trivial mechanism giving the overall
lowest activation energy. In principle, the minimum mode
following method provides an unbiased search for all possible
transition mechanisms that are feasible, if enough sampling is
carried out.

In this article, we show how the minimum mode following
method can be successfully used for investigating kink creation
and migration in silicon. We focus on the screw dislocation,
for which kink formation and migration has recently been
studied with both empirical potential and DFT methods [25].
This system has the advantage of being relatively simple
compared to silicon partial dislocations, and is thus well
suited for examining the potential of the minimum mode
following method in the case of extended defect mobility
studies.

2. Methods

The simulated system is a piece of silicon crystal with a
cubic diamond structure oriented along the X̂ = [12̄1],
Ŷ = [111] and Ẑ = [1̄01] axis, including a non-dissociated
screw dislocation aligned with Ẑ and located in the middle
of the system in the center of one hexagon [26]. There
are 20 approximately square layers stacked along the Ẑ axis
and the total number of atoms is 16 800. Periodic boundary
conditions are applied along the Ẑ axis in order to model an
infinite dislocation. To study the migration mechanism, two
opposite kinks are introduced in the system, resulting in a
kinked screw dislocation along the X̂ direction (figure 1). The
initial distance between the two kinks corresponds to 7 layers
along Ẑ , which is large enough to make the kink–kink elastic
interaction negligible. Finally, the system surfaces with X̂ and
Ŷ as normals are free to relax in order to minimize surface
effects.

Atomic interactions have been modeled using several
empirical potentials: the environmental-dependent interaction
potential (EDIP) [27], Lenosky [28], Tersoff [29], Stillinger–
Weber [30] and Bolding–Andersen [31] potentials. For each
of these, we have investigated the structure and stability of the
kink configurations using a conjugate gradient minimization
with a convergence criterion of 10−5 eV Å

−1
in the maximal

force.
The minimum mode following method [10] has been

used to explore in an unbiased way the possible transition
mechanisms. The idea behind the Dimer method is to locate
saddle points on the potential energy surface (PES) near to the
initial configuration. At the beginning of each saddle point
search, the atoms within a radius of 4.0 Å from the atom in
the center of a kink are displaced randomly. The norm of the
displacement vector is scaled to 0.75 Å. When a saddle point
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Figure 1. Structure of the initial configuration relaxed using EDIP
potential. Left X̂ Ẑ-plane, right Ŷ Ẑ -plane. In the initial configuration
the two kinks are separated by 7 atomic layers. The two processes of
interest either separate the kinks further or bring them closer. The
darker (blue) colored bonds connect to over-coordinated atoms—the
kink-atoms in this configuration.

search is started, the initial estimation of the Hessian lowest
eigenmode is done with 20 dimer rotational iterations, whereas
only three rotational iterations are used when homing in on a
saddle point. A search is considered to have converged when
the total force vector has a norm below 25 meV Å

−1
. For each

system and interaction potential, a total of 200 saddle point
searches were carried out starting to sample the saddle points
on the energy surface.

The CI-NEB method has also been used to determine the
full MEPs for the mechanisms revealed by the low energy
saddle points. There, the band consisted of 28 replicas and
the initial linear interpolation connected the initial and final
configurations to the saddle point or an intermediate stable
configuration, if the minimum mode following calculation had
revealed its presence. The CI-NEB calculation was considered
to have converged when the norm of the force vector for the
image with the largest force was below 2.5 meV Å

−1
. For

calculations using the Tersoff potential a band of seven images
is constructed by a linear interpolation directly connecting
the relaxed endpoint configurations. For the latter mentioned
calculation a less strict convergence criterion (50 meV Å

−1
)

was used.

3. Results

3.1. Kinks stability

The various empirical potential functions for Si give quite
different results for the kink configuration. For the
EDIP potential, the most stable kink configuration found is
characterized by a central 5-coordinated atom, in agreement
with previous calculations [25] (figure 1). We have considered
a cut-off distance of 2.7 Å for defining bonds in the
structural analysis. For the Lenosky potential, the lowest
energy configuration includes a 3-coordinated atom in the
center of the kink. This structure is similar to what is
obtained from first-principles calculations [25]. The Tersoff
potential gives a stable kink structure characterized by three
5-coordinated atoms. This configuration is similar to a
metastable, intermediate transition structure obtained with the
EDIP potential [25]. The Stillinger–Weber and the Bolding–
Andersen potentials did not give a screw dislocation core
located in the center of a hexagon. With these potentials, the
most stable core is centered at a hexagon long bond. After
kinks had been introduced in the system, relaxation led to
spontaneous recombination and elimination of the kinks. As a
consequence, we did not consider these two potential functions
in studies of the transition mechanism using the minimum
mode following and the CI-NEB methods.

3.2. Kink migration

When using the EDIP potential, we found many different
possible transitions leading to an increase of the kink–kink
separation distance along the Ẑ axis. The three lowest energy
saddle points found by the minimum mode following method
give activation energies of 0.17, 0.26 and 0.33 eV and the
corresponding prefactors have been determined to be 460, 490
and 820 GHz. The corresponding mechanisms, named M-I, M-
II, and M-III in the following, have then been further analyzed
in terms of structural changes by computing the MEPs with
the CI-NEB method (figure 2). From the MEPs it is clear that
for mechanisms M-I and M-III, the system passes through an
intermediate stable configuration during the transition, whereas
M-II is a direct transformation from the initial to the final
configuration. The lowest energy mechanism M-I is the
same as obtained from previous calculations [25], with an
intermediate metastable configuration characterized by three
5-coordinated atoms. The migration mechanism is initiated
by two atoms, labeled I1 and K2 in figure 3, moving toward
each other, until the intermediate configuration is reached. In
the second part of the transition, atoms I1 and K1 move again
away from each other until the final configuration is obtained.
In mechanism M-II, the saddle point configuration includes
one 3-coordinated atom. Interestingly, this mechanism appears
similar to what is obtained in first-principles calculations [25],
although in the latter the transition energy is much lower.
During the migration, atoms I1 and K2 (figure 3) move toward
each other while I1 and K1 move away from each other
until the final configuration is obtained. Finally, the third
mechanism M-III, bears some similarities with M-II, with two
quite similar saddle points. However, the M-III mechanism
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Figure 2. The three lowest energy migration mechanisms for a kink using the EDIP potential. The MEPs have been traced out with the
CI-NEB method. Darker (blue) corresponds to five-fold coordination and brighter (red) corresponds to three-fold coordination. For M-I and
M-III mechanisms an intermediate stable configuration is visited, whereas M-II is a direct transition from the initial to the final state. The
saddle point configurations for M-II and M-III differ in that for M-II the three-fold coordinated atom is closer to the row below.

also involves an intermediate stable state, obtained by bonding
the previously 3-coordinated atom (see figure 2). M-III is the
most complex mechanism as I1 and K1 move away from each
other while at the same time I1 and I2 move towards each other.
These changes bring the system to the intermediate state. In the
second part of the mechanism, I1 continuously moves towards
K2 whereas I1 and I2 now move away from each other.

The searches performed using the Lenosky potential
identified several saddle points, but only one of them connects
the initial and final configurations of interest. This process
has an activation energy of 0.07 eV. The mechanism is similar
to M-II for the EDIP potential and no intermediate stable
configuration occurs during the migration (lower mechanism
in figure 4). The saddle point configuration where a bond
has broken contains two extra 3-coordinated atoms. This
preference for under-coordination by the Lenosky potential is
consistent with the stable kink configuration containing a 3-
coordinated atom while the stable configuration using EDIP
contains a 5-coordinated atom.

For the Tersoff potential a migration barrier of 0.18 eV
was determined by directly using the CI-NEB method. This
mechanism involves an intermediate metastable structure
characterized by one 5-coordinated atom while the initial,
stable configuration includes three 5-coordinated atoms. The
atomic displacements involved in the process are similar
to those yielding the M-I mechanism found for the EDIP
potential. The most stable configuration found for the Tersoff
potential is similar to the intermediate structure obtained with
the EDIP potential, and the intermediate configuration found
for the Tersoff potential is the most stable structure found for
the EDIP potential.

Table 1 summarizes the results for kink migration and
compares the results obtained here using the empirical
potentials with previous DFT calculations [25]. Although
the empirical potentials give quite different outcomes, it is
noteworthy that the lowest computed energy barrier is small
in all cases, from 0.07 eV (Lenosky potential) to 0.18 eV
(Tersoff potential). There is, then, an reasonably good overall
agreement with DFT calculations, which gave an activation
energy of 0.075 eV for a similar system. Among the empirical
potentials, the Lenosky potential gives results that are most
similar to DFT, in particular an almost equal energy barrier.
It is also the only one of the empirical potentials that has a
stable kink configurations with a central 3-coordinated atom,
similar to the DFT calculations. Conversely, EDIP and
the Tersoff potential tend to favor over-coordination rather
than under-coordination, with one or several 5-coordinated
atoms. Nevertheless, these two potentials might still be
useful for modeling the mobility of screw dislocations by
kink formation and migration. The estimated activation
energy for these potentials is not that much larger than DFT
results.

3.3. Kink pair creation

The mechanism for the creation of kinks was studied using
the Lenosky potential, as this potential reproduced quite well
the kink structure and migration results obtained by DFT
calculations. To determine the kink pair creation mechanisms
a series of 50 saddle point searches were carried out. Of
the saddle points found, the creation of a kink pair is the
fourth lowest and it involves a barrier of 1.19 eV and a
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[101][111]

A

A'

K1 K2
I2

I1

A

A'

K1 K2
I2

I1

Figure 3. The initial and final configuration of the kink for the
process where the kinks separate. In the initial configuration the
kinks are separated by 7 atomic layers and in the final by 8 layers. A
kink on a screw dislocation modeled with EDIP can be characterized
by a five-fold coordinated atom (darker (blue) colored bonds),
labeled K1 in the initial and K2 in the final configuration, all other
atoms are four-fold coordinated. The two atoms labeled I1 and I2 are
the atoms, besides K1 and K2, being displaced the most during the
transitions from the initial to the final configuration.

Table 1. Calculated activation energy for kink migration using three
different Si interatomic potentials compared with density functional
theory results. The minimum energy path involves an intermediate
stable state for two of the potentials.

Barrier (eV) Intermediate

Lenosky 0.07 No
EDIP 0.17 Yes
Tersoff 0.18 Yes

DFT 0.075 [25] No

prefactor of 760 GHz (�EC and νC in figure 4). The three
lowest energy saddle points, which have energy of 0.90 eV
and higher, correspond to the creation of a point defect.
The kink pair configuration that is created is only weakly
stable since annihilation and reconstruction of the perfect
screw can occur with an energy barrier of only 0.02 eV and
a prefactor of 1000 GHz (�EA and νA). This attraction
between the kinks is also manifested in the barrier for the
first subsequent migration event, which is 0.11 eV (�EM,S),
slightly higher than 0.07 eV as determined for the migration of
non-interacting kinks. However, both migration mechanisms
have a prefactor of 760 GHz (νM,S and νM,A). The kink
pair is created on the screw dislocation by passing through
a saddle point configuration which contains three broken

Creation

Migration

υC = 760 GHz
ΔEC = 1.19 eV

υA = 1000 GHz
ΔEA = 0.02 eV

υM,S = 760 GHz
ΔEM,S = 0.11 eV

υM,A = 760 GHz
ΔEM,A = 0.04 eV

Saddle Points

Figure 4. The creation and migration mechanism of kinks using the
Lenosky potential. The color code is the same as in figure 2. The
right column shows the saddle point configurations for creation
(upper) and migration (lower). The upper is the creation mechanism
involving a 1.19 eV barrier (�EC) (the kinks have to be separated by
3 layers to obtain two stable kinks), whereas the barrier for
annihilation of the kinks is only 0.02 eV (�EA). Besides the
difference in barrier energies there is also a slight difference in the
prefactors, which for creation is 760 GHz (νC) and 1000 GHz for
annihilation (νA). The lower shows the subsequent migration
mechanism, the barrier for increasing separation (�EM,S) is initially
larger than for decreasing separation (�EM,A) due to attractive
kink–kink interaction (for non-interacting kinks the barrier is
0.07 eV). The prefactor for both migration mechanisms is 760 GHz
(νM,S and νM,A).

bonds. These three broken bonds result in four atoms being
under-coordinated, consistent with the relatively high energy
barrier. The structural rearrangement involves significant
displacements of eight atoms that are in between the kinks, the
central atoms moving the most.

4. Computational effort

The computational effort involved in finding the saddle points
is best quantified by counting the total number of force and
energy evaluations required for the minimum mode following
calculations to reach convergence and the fraction of searches
that lead to each of the low energy saddle points. This is
summarized for the three lowest EDIP saddle points in table 2.
Figure 5 shows the frequency with which the lowest 17 saddle
points were found. The most important result is that the
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Figure 5. Relative occurrence of the 17 lowest saddle points found in
200 converged saddle point searches using the minimum mode
following method and EDIP interaction potential. 31.5% of the
searches lead to one of the three lowest energy saddle points. The
inset shows the mechanism of the most frequently found saddle point
which leads to the formation of a point defect.

Table 2. The computational effort, measured in the number of
force/energy evaluations, for locating the three low energy migration
mechanisms for the EDIP potential, based on 200 converged saddle
point searches. FCs abbreviates forcecalls.

Barrier
(eV)

Times
determined

Max
FCs

Min
FCs

Ave.
FCs

M-I 0.17 23 [11.5%] 1725 252 713
M-II 0.26 27 [13.5%] 411 188 285
M-III 0.33 13 [6.5%] 506 146 231

three lowest energy saddle points, which are the important
ones for migration, are among the five most frequently found
saddle points. The M-III mechanism is determined less
frequently than M-I and M-II, however. Other high energy
mechanisms are shown in the figure 5, which correspond to
transformations into configurations different from the final
configurations of interest. It is important here to emphasize that
the minimum mode following method locates saddle points
without any bias, which means that all possible transitions
whether or not they involve kink migration are potentially
found. Statistics for the number of force/energy evaluations
for the three lowest barrier mechanisms are reported in table 2.
The lowest energy mechanism M-I requires the most force
evaluations and is determined by 11.5% of the searches. For
M-II and M-III, less force/energy evaluations are required in
average. Note that the number of force/energy evaluations
needed here is in accordance with the numbers given in [11]
when taking into account the large number of degrees of
freedom. In the case of the Lenosky potential, we found that
the migration mechanism with the lowest barrier is the second
most frequently determined mechanism, accounting for 16%
of the searches. The average number of forcecalls was 976 in
this case.

5. Summary

We demonstrated here how the minimum mode following
method for finding saddle points can be used to do an extensive
search for possible mechanisms leading to the formation and
migration of kinks on a non-dissociated screw dislocation
in silicon. This illustrates how the method can be used
to identify the mechanism and determine the rate for non-
trivial transitions in complex systems. For both the EDIP
and the Lenosky potentials, we expect that we have obtained
all possible lowest energy transitions for the kink migration.
Three possible mechanisms have been identified for EDIP, with
activation energies between 0.17 and 0.33 eV, whereas only
one is obtained for the Lenosky potential with an activation
energy 0.07 eV. The mechanism and the activation energy
found using the latter potential is quite similar to the results
obtained by DFT calculations [25]. We also considered the
Tersoff potential, for which we found that the minimum energy
kink migration occurs through yet another different process.
Therefore, it appears that each potential yields a different
mechanism.

Using the Lenosky potential, the kink pair creation
mechanism has also been determined. To obtain the two stable
kinks they need to be separated by at least three layers, which
is why the creation process is a concerted displacement where
as many as eight atoms are significantly displaced.

To conclude, the results presented here demonstrate
how the minimum mode method can be used to investigate
dislocation mobility and how much computational effort is
involved. This method is powerful for easily exploring
complicated high dimensional potential energy surfaces, as
usually occurs for extended defects in covalent bonded
materials. In fact, dislocation and kink structures for these
materials generally involve complicated and non-intuitive bond
reorganizations with many possible configurations. Using the
minimum mode following method, we were able to determine
several possible mechanisms for the kink migration and
creation without any preconceived bias. Two point boundary
methods, where both initial and final state need to be known
a priori, such as the NEB and the CI-NEB methods result in a
more limited sampling of possible mechanisms and involve a
preconceived bias through the selection of the final state.
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